Abstract

We present an analytical solution for the vortex lattice in a rapidly rotating trapped Bose-Einstein condensate in the lowest Landau level and discuss deviations from the Thomas-Fermi density profile. This solution is exact in the limit of a large number of vortices and is obtained for the cases of circularly symmetric and narrow channel geometries. The latter is realized when the trapping frequencies in the plane perpendicular to the rotation axis are different from each other and the rotation frequency is equal to the smallest of them. This leads to the cancellation of the trapping potential in the direction of the weaker confinement and makes the system infinitely elongated in this direction. For this case we calculate the phase diagram as a function of the interaction strength and rotation frequency and identify the order of quantum phase transitions between the states with a different number of vortex rows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call