Abstract

The idea of using sinusoidal leading edge as a kind of passive flow control method was inspired by observing the flipper movement of the humpback whale. It was believed that the protuberances along the whale’s pectoral fin could delay stall, thus would enhance the maneuverability of the whale. It has also been shown that when equipped with sinusoidal leading edges, the stall of a delta wing could be delayed. In this paper, stereoscopic particle image velocimetry was adopted to study the vortex structures for the flow over a 52° swept delta wing with sinusoidal leading edges. A direct comparison with the flow over a baseline delta wing was made to illustrate the different vortex structures of these two kinds of models. Results have shown that the flow over the baseline delta wing was dominated by dual leading-edge vortices (LEVs), a structure that only existed for flow over nonslender delta wing at certain Reynolds number. On the other hand, the flow over the one with sinusoidal leading edge showed a very different pattern. It has been found in this paper that there were several pairs of LEVs existed on the leeward side of the wing, which might explain the stall-delaying effect of the delta wing with sinusoidal leading edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call