Abstract

The vortex states in a thin mesoscopic disk are investigated within the phenomenological Ginzburg-Landau theory in the presence of different ''model'' magnetic field profiles with zero average field which may result from a ferromagnetic disk or circulating currents in a loop near the superconductor. We calculated the dependences of both the ground and metastable states on the magnitude and shape of the magnetic field profile for different values of the order parameter angular moment, i.e. the vorticity. The regions of existence of the multi-vortex state and the giant vortex state are found. We analysed the phase transitions between these states and studied the contribution from ring-shaped vortices. A new transition between different multi-vortex configurations as the ground state is found. Furthermore, we found a vortex state consisting of a central giant vortex surrounded by a collection of anti-vortices which are located in a ring around this giant vortex. The limit to a disk with an infinite radius, i.e. a film, will also be discussed. We also extended our results to ''real'' magnetic field profiles and to the case in which an external homogeneous magnetic field is present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call