Abstract
For studying the vortex structure in uniform dense dusty astrophysical conditions, a two-dimensional nonlinear equation is derived employing the quantum magnetoplasma hydrodynamic model and considering the strong collisional effect. The coherent vortex solution is obtained by perturbation analysis method. It is shown that the distribution of the electrostatic potential forms spatially a periodic vortex street, and is controlled temporally by the arbitrary function of time that may lead to abundant spacial distributions. It is found that the dust charge number, collision frequency, electron Fermi wavelength and quantum correction all play significant roles to the spatial distribution of vortex street.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.