Abstract

Abstract The effect of a large-scale internal wave on a multipolar compound vortex was simulated numerically using a 3D Boussinesq pseudospectral model. A suite of simulations tested the effect of a background internal wave of various strengths, including a simulation with only a vortex. Without the background wave, the vortex remained apparently stable for many hundreds of inertial periods but then split into two dipoles. With increasing background wave amplitude, and hence shear, dipole splitting occurred earlier and was less symmetric in space. Theoretical considerations suggest that the vortex alone undergoes a self-induced mixed barotropic–baroclinic instability. For a vortex plus background wave, kinetic energy spectra showed that the internal wave supplied energy for the dipole splitting. In this case, it was found that the presence of the wave hastened the time to instability by increasing the initial perturbation to the vortex. Results suggest that the stability and fate of submesoscale vortices in the ocean may be significantly modified by the presence of large-scale internal waves. This could in turn have a significant effect on the exchange of energy between the submesoscale and both larger and smaller scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.