Abstract
Thermal crisis of a stationary vortex source flowing to vacuum is considered for air on the basis of the model of a diatomic gas with variable heat capacities due to the excitation of vibrational degrees of freedom of molecules. The versions with different heat supply laws are compared. The effect of the size of the heat-release region (from close-to-zero value to that exceeding the minimal radius of the vortex source by tens of times) as well as the effect of the circulation of the flow on the critical parameters determining thermal crisis are considered. A qualitative difference from the thermal crisis in a perfect (ideal) gas with constant heat capacities is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.