Abstract
The dynamics of vortex rings generated within confined domains are relevant to important hydrodynamic processes such as flow past heart valves or severe arterial constrictions. However, despite their importance, these flows have not received much attention to date. This study examines the development and evolution of radially confined vortex rings. Time-resolved digital particle image velocimetry was used to investigate two levels of radial confinement and a range of vortex ring strengths. We found that for severely confined vortex rings, the formation time and peak circulation values were unaffected for L/D 0 < 4 cases and slightly affected for larger L/D 0 cases. After pinch-off, circulation decay was observed with an approximately constant normalized circulation decay rate. We found that with increasing circulation strength, the nondimensional time delay between the pinch-off and the onset of circulation decay reduced due to an increased vortex ring diameter within the confinement domain and a reduction in the necessary time for the surface induced and core vorticity regions to interact. This study uncovers the dynamics of radially confined vortex rings and show that the nondimensional rate of circulation decay is dependent on the vortex ring confinement ratio (ratio of the vortex ring orifice diameter to the diameter of the outer cylinder), and the time delay between the vortex pinch-off and the onset of circulation is dependent on the vortex ring circulation strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.