Abstract

We review recent rigorous results on the phenomenon of vortex reconnection in classical and quantum fluids. In the context of the Navier–Stokes equations in mathbb {T}^3 we show the existence of global smooth solutions that exhibit creation and destruction of vortex lines of arbitrarily complicated topologies. Concerning quantum fluids, we prove that for any initial and final configurations of quantum vortices, and any way of transforming one into the other, there is an initial condition whose associated solution to the Gross–Pitaevskii equation realizes this specific vortex reconnection scenario. Key to prove these results is an inverse localization principle for Beltrami fields and a global approximation theorem for the linear Schrödinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.