Abstract
Motivated by a recent experiment, we study nonequilibrium quantum phenomena taking place in the quench of a spinor Bose-Einstein condensate through the zero-temperature phase transition separating the polar paramagnetic and planar ferromagnetic phases. We derive the typical spin domain structure (correlations of the effective magnetization) created by the quench arising due to spin-mode quantum fluctuations, and we establish a sample-size scaling law for the creation of spin vortices, which are topological defects in the transverse magnetization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.