Abstract
To better understand vortex pinning in thin superconducting slabs, we study the interaction of a single fluctuating vortex filament with a curved line defect in (1+1) dimensions. This problem is also relevant to the interaction of scratches with wandering step edges in vicinal surfaces. The equilibrium probability density for a fluctuating line attracted to a particular fixed defect trajectory is derived analytically by mapping the problem to a straight line defect in the presence of a space and time-varying external tilt field. The consequences of both rapid and slow changes in the frozen defect trajectory, as well as finite size effects are discussed. A sudden change in the defect direction leads to a delocalization transition, accompanied by a divergence in the trapping length, near a critical angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.