Abstract

Vortex mechanism of heat transfer enhancement in a narrow channel with dimples has been investigated numerically using LES and URANS methods. The flow separation results in a formation of vortex structures which significantly enhance heat transfer on dimpled surfaces leading to a small increase in pressure loss. The heat transfer can be significantly increased by rounding the dimple edge and use of oval dimples. To get a deep insight into flow physics LES is performed for single phase flow in a channel with a spherical dimple. The instantaneous vortex formation and separation are investigated in and around the dimple area. Considered are Reynolds numbers (based on dimple print diameter) ReD = 20,000 and ReD = 40,000 the depth to print diameter ratio of Δ = 0.26. Frequency analysis of LES data revealed the presence of dominating frequencies in unsteady flow oscillations. Direct analysis of the flow field revealed the presence of coherent vortex structure inclined to the mean flow. The structure changes its orientation in time causing the long period oscillations with opposite-of-phase motion. Three dimensional proper orthogonal decomposition (POD) analysis is carried out on LES pressure and velocity fields to identify spatio-temporal structures hidden in the random fluctuations. Tornado-like spatial POD structures have been determined inside dimples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.