Abstract

.We discuss a manifestly covariant formulation of ideal relativistic magnetohydrodynamics, which has been recently used in astrophysical and heavy-ion contexts, and compare it to other similar frameworks. We show that the covariant equations allow for stationary vortex-like solutions that represent generalizations of the perfect-fluid solutions describing systems in global equilibrium with rotation. Such solutions are further used to demonstrate that inhomogeneous Maxwell equations, implicitly included in the covariant framework, may generate very large electric charge densities. This suggests that solutions of the covariant formulation may violate in some cases the assumptions of standard ideal magnetohydrodynamics. Furthermore, we show that the flow four-vector and conserved currents obtained in the covariant approach are usually not related to each other, which hinders kinetic-theory interpretation of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.