Abstract

We study the ground states of rotating atomic Bose-Einstein condensates with dipolar interactions. We present the results of numerical studies on a periodic geometry which show vortex lattice ground states of various symmetries: triangular and square vortex lattices, ``stripe crystal,'' and ``bubble crystal.'' We present the phase diagram (for systems with a large number of vortices) as a function of the ratio of dipolar to contact interactions and of the chemical potential. We discuss the experimental requirements for observing transitions between vortex lattice ground states via dipolar interactions. We finally investigate the stability of mean-field supersolid phases of a quasi-two-dimensional nonrotating Bose gas with dipolar interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call