Abstract

We study the dynamics of large vortex lattices in a dilute gas Bose–Einstein condensate. Rapidly rotating condensates are created that contain vortex lattices with up to 300 vortices. The condensates are held in a parabolic trapping potential, and rotation rates exceeding 99% of the radial trapping frequency are achieved. By locally suppressing the density while maintaining the phase singularities, we create vortex aggregates. To illustrate the underlying Coriolis force driven dynamics, oscillation frequencies of the vortex aggregate area are measured. A related technique also enables us to excite and directly image Tkachenko modes in a vortex lattice. These modes provide evidence for the shear strength that a vortex lattice in a superfluid can support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.