Abstract

It is shown theoretically and by simulation that a Gaussian laser beam of relativistic intensity interacting with a uniform-thickness plasma slab of azimuthally varying density can acquire orbital angular momentum (OAM). During the interaction, the laser ponderomotive force and the charge-separation force impose a torque on the plasma particles. The affected laser light and plasma ions gain oppositely directed axial OAM, but the plasma electrons remain almost OAM free. High OAM conversion efficiency is achieved due to the strong azimuthal electromagnetic energy flow during the laser phase modulation. The present scheme should provide useful reference for applications requiring relativistic-intense vortex light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.