Abstract

An understanding of macroscopic vortex-induced chirality can provide insights into the origin of the homochirality of life. While circular dichroism measurements in stirred solutions are useful for the analysis of chiral supramolecular structures induced by vortex motion, there are no reports on the application of other spectroscopic methods. To obtain a deeper understanding of macroscopic vortex-induced chirality, it is essential to develop novel in situ spectroscopic methods that provide information about changes in both the size and chirality in stirred solutions. Here, we report the first observation by harmonic light scattering of the mirror-symmetry-breaking process of porphyrin J-aggregates under the rotation of a magnetic stirrer. The chiral supramolecular structure observed during stirring is likely due to the formation of a chiral aggregate that consists of porphyrin J-aggregates. The dissociation of the structure proceeds in two steps (a fast step and a slow step), as indicated by the signal decay rate when stirring was stopped. This novel method is useful for analyzing the supramolecular structural changes of chiral aggregates induced by external stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.