Abstract
In the present paper, the problem of vortex images in the annular domain between two coaxial cylinders is solved by the q-elementary functions. We show that all images are determined completely as poles of the q-logarithmic function, and are located at sites of the q-lattice, where a dimensionless parameter q = r22/r21 is given by the square ratio of the cylinder radii. The resulting solution for the complex potential is represented in terms of the Jackson q-exponential function. Our approach in this paper provides an efficient path to rediscover known solutions for the vortex–cylinder pair problem and yields new solutions as well. By composing pairs of q-exponents to the first Jacobi theta function and conformal mapping to a rectangular domain we show that our solution coincides with the known one, obtained before by elliptic functions. The Schottky–Klein prime function for the annular domain is factorized explicitly in terms of q-exponents. The Hamiltonian, the Kirchhoff–Routh and the Green functions are constructed. As a new application of our approach, the uniformly rotating exact N-vortex polygon solutions with the rotation frequency expressed in terms of q-logarithms at Nth roots of unity are found. In particular, we show that a single vortex orbits the cylinders with constant angular velocity, given as the q-harmonic series. Vortex images in two particular geometries with only one cylinder as the q → ∞ limit are studied in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.