Abstract
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heating over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore currents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula increasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST >31°C forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The convergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward toward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB monsoon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.