Abstract
AbstractThe dynamics of low-frequency, short-wavelength electrostatic (SWES) drift waves in a self-gravitating, non-uniform, collisional dusty magnetoplasma with equilibrium dust-velocity gradients is studied in the present work. By employing the dust continuity and momentum equations to describe the dust dynamics and Boltzmann distribution for the electrons and ions, we have derived a new set of nonlinear mode coupling equations. In the linear limit, it is found that SWES drift waves are subjected to dissipative instability in the presence of an equilibrium dust sheared flow and self-gravitation effect. On the other hand, in the nonlinear case, it is shown that possible stationary solutions of the nonlinear equations are dipolar vortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.