Abstract

Families of vortex equilibria, with constant vorticity, in steady flow past a flat plate are computed numerically. An equilibrium configuration, which can be thought of as a desingularized point vortex, involves a single symmetric vortex patch located wholly on one side of the plate. Given that the outermost edge of the vortex is unit distance from the plate, the equilibria depend on three parameters: the length of the plate, circulation about the plate, and the distance of the innermost edge of the vortex from the plate. Families in which there is zero circulation about the plate and for which the Kutta condition at the plate ends is satisfied are both considered. Properties such as vortex area, lift and free-stream speed are computed. Time-dependent numerical simulations are used to investigate the stability of the computed steady solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.