Abstract

Time-reversal invariant Dirac and Weyl semimetals in three dimensions (3D) can host open Fermi arcs and spin-momentum locking Fermi loops on the surfaces. We find that when they become superconducting with s-wave pairing and the doping is lower than a critical level, straight π-flux vortex lines terminating at surfaces with Fermi arcs or spin-momentum locking Fermi loops can realize 1D topological superconductivity and harbor Majorana zero modes at their ends. Remarkably, we find that the vortex-generation-associated Zeeman field can open (when the surfaces have only Fermi arcs) or enhance the topological gap protecting Majorana zero modes, which is contrary to the situation in superconducting topological insulators. By studying the tilting effect of bulk Dirac and Weyl cones, we further find that type-I Dirac and Weyl semimetals in general have a much broader topological regime than type-II ones. Our findings build up a connection between time-reversal invariant Dirac and Weyl semimetals and Majorana zero modes in vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.