Abstract
Vorticity has recently been suggested to be a property of highly spinning black holes. The connection between vorticity and limiting spin represents a universal feature shared by objects of maximal microstate entropy, so-called saturons. Using Q-ball-like saturons as a laboratory for black holes, we study the collision of two such objects and find that vorticity can have a large impact on the emitted radiation as well as on the charge and angular momentum of the final configuration. As black holes belong to the class of saturons, we expect that the formation of vortices can cause similar effects in black hole mergers, leading to macroscopic deviations in gravitational radiation. This could leave unique signatures detectable with upcoming gravitational-wave searches, which can thereby serve as a portal to macroscopic quantum effects in black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.