Abstract

The motion of a point vortex along a rectilinear boundary with a circle cavity, which models the coastline of a bay, and associated fluid particle advection are studied within a model of barotropic inviscid fluid. Using an analytical expression for the complex potential through which the velocity field is determined, we show that fluid particles start moving irregularly when the vortex is passing the cavity due to the nonstationarity of the velocity field generated by the vortex. Some of the fluid particles which were initially inside the vortex atmosphere leave it due to the irregularity and remain within the cavity vicinity. Depending on the initial position of the vortex and a parameter that determines the cavity size, the fraction of these fluid particles can differ significantly from fluid particles initially uniformly distributed within the vortex atmosphere. The escape of fluid particles from the vortex atmosphere is shown to be most efficient in the case of a relatively closed cavity under the condition that the initial vortex atmosphere area should be significantly smaller than the cavity area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.