Abstract

The extraction of energy from vortical structures advecting through an ambient environment is a topic of interest due to the potential to power miniature in situ sensors and monitors. This work investigates the vortex dynamics and flow-induced vibrations of a flexible plate arising from a vortex ring passing tangentially over it. Experimental measurements of the flow field and plate dynamics are performed in tandem with a coupled potential flow/Kirchhoff-Love plate model in order to (i) elucidate the physics of the vortex-plate interactions in the specified orientation and relate the energy exchange between the ring and the plate to the attendant vortex dynamics; (ii) validate the potential flow model and provide any needed corrections to account for the simplifying assumptions; and (iii) provide empirical data for estimating energy harvesting capabilities in the specified orientation. The plate loading arises as a result of an initial down-wash, followed quickly by a region of reduced pressure as the vortex core passes over the plate. The fundamental physics of the interaction is discussed, identifying three regimes. When the centerline of the vortex ring is positioned greater than approximately 2 vortex ring radii away from the plate it can be considered to be in the far-field, and the resulting vibrations are well predicted through potential flow, once the plate dynamics are corrected for edge effects arising from a finite plate width. As the offset distance of the vortex ring is decreased, diffusion of induced vorticity on the plate into the flow field significantly alters the fluid dynamics, pressure loading, and the resultant plate dynamics, and dramatically increases the strain energy in comparison with the potential flow model predictions. A first-order correction to the potential flow model is proposed to account for the finite plate width, while empirical correlations are presented for the plate strain energy in cases where ring/induced vorticity interactions are significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.