Abstract

A conical Euler/Navier-Stokes algorithm is presented for the computation of vortex-dominated flows. The flow solver involves a multistage Runge-Kutta time stepping scheme which uses a finite-volume spatial discretization on an unstructured grid made up of triangles. The algorithm also employs an adaptive mesh refinement procedure which enriches the mesh locally to more accurately resolve the vortical flow features. Results are presented for several highly-swept delta wing and circular cone cases at high angles of attack and at supersonic freestream flow conditions. Accurate solutions were obtained more efficiently when adaptive mesh refinement was used in contrast with refining the grid globally. The paper presents descriptions of the conical Euler/Navier-Stokes flow solver and adaptive mesh refinement procedures along with results which demonstrate the capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.