Abstract

Incompressible, steady and pulsatile flows in axisymmetric sudden expansions with diameter ratios of 1:2.25 and 1:2.00 have been simulated numerically over the ranges of time-averaged bulk Reynolds number 0.1 ≤ Re ≤ 400 and Womersley number 0.1 ≤ W ≤ 50. For steady flow, the calculated recirculation zone length increased linearly with an increase in Re, in good agreement with earlier experiments. For pulsatile flows, particularly at higher values of W, the recirculation zone length correlated strongly with the acceleration of the flow and not with the instantaneous Reynolds number; it increased during the deceleration phase and decreased during the acceleration phase. The computed mean velocity and reattachment length were in general agreement with published experimental data. At relatively low W, the computed near-wall, reverse flow region extended along the full domain over part of the cycle, similarly to that in the experiments. At low values of W, the vortex rings created at the expansion remained attached and oscillated back and forth; for an intermediate range of W, they detached and moved downstream; at relatively high W, these vortices became, once more, attached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call