Abstract

We study vortex unbinding for the classical two-dimensional XY model in a magnetic field on square and triangular lattices. A renormalization group analysis combined with duality in the model shows that at high temperature and high field, the vortices unbind as the magnetic field is lowered in a two-step process: strings of overturned spins first proliferate and then vortices unbind. The transitions are highly continuous but are not of the Kosterlitz–Thouless type. The unbound vortex fixed point is shown to inherit properties of the underlying lattice, in particular containing a set of nodal lines that reflect the lattice symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.