Abstract

The surprisingly rapid relaxation of the sustainable current density in the critical state of single crystalline Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ is investigated for magnetic fields oriented parallel to the c-axis and to the $ab$--plane respectively. Due to the inadequacy of standard analysis procedures developed for flux creep in the high temperature superconducting cuprates, we develop a simple, straightforward data treatment technique that reveals the creep mechanism and the creep exponent $\mu$. At low magnetic fields, below the second magnetization peak, $\mu$ varies only slightly as function of temperature and magnetic flux density $B$. From the data, we determine the temperature- and field dependence of the effective activation barrier for creep. At low temperatures, the measured current density approaches the zero--temperature critical current density (in the absence of creep) to within a factor 2, thus lending credence to earlier conclusions drawn with respect to the pinning mechanism. The comparable values of the experimental screening current density and the zero-temperature critical current density reveals the limited usefulness of the widely used "interpolation formula".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.