Abstract

We investigate several mechanisms of vortex creation during splitting of a spinor Bose-Einstein condensate (BEC) in a magnetic double-well trap controlled by a pair of current carrying wires and bias magnetic fields. Our study is motivated by a recent MIT experiment on splitting BECs with a similar trap [Y. Shin et al., Phys. Rev. A 72, 021604 (2005)], where an unexpected fork-like structure appeared in the interference fringes indicating the presence of a singly quantized vortex in one of the interfering condensates. It is well known that in a spin-1 BEC in a quadrupole trap, a doubly quantized vortex is topologically produced by a 'slow' reversal of bias magnetic field B{sub z}. Since in the experiment a doubly quantized vortex had never been seen, Shin et al. ruled out the topological mechanism and concentrated on the nonadiabatic mechanical mechanism for explanation of the vortex creation. We find, however, that in the magnetic trap considered both mechanisms are possible: singly quantized vortices can be formed in a spin-1 BEC topologically (for example, during the magnetic field switching-off process). We therefore provide a possible alternative explanation for the interference patterns observed in the experiment. We also present a numerical example of creationmore » of singly quantized vortices due to 'fast' splitting; i.e., by a dynamical (nonadiabatic) mechanism.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call