Abstract

Using numerical simulations we study the configurations, dynamics, and melting properties of vortex lattices interacting with elliptical pinning sites at integer matching fields with as many as 27 vortices per pin. Our pinning model is based on a recently produced experimental system [G. Karapetrov et al., Phys. Rev. Lett. 95, 167002 (2005)], and the vortex configurations we obtain match well with experimental vortex images from the same system. We find that the strong pinning sites capture more than one vortex each, and that the saturation number of vortices residing in a pin increases with applied field due to the pressure from the surrounding vortices. At high matching fields, the vortices in the intestitial regions form a disordered triangular lattice. We measure the depinning thresholds for both the x and y directions, and find distinctive dynamical responses along with highly anisotropic thresholds. For melting of the vortex configurations under zero applied current, we find multi-step melting transitions in which the interstitial vortices melt at a much lower temperature than the pinned vortices. We associate this with signatures in the specific heat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call