Abstract

A novel method to design leaky-wave antennas radiating vortex cylindrical Airy beams at microwave frequencies is here presented. Two different approaches are adopted to produce waves with a nonzero orbital angular momentum (OAM): one based on a bull’s eye design excited by a uniform circular array of vertical coaxial probes with proper azimuthal phase delay, and one based on a single coaxial feeder exciting a multi-spiral radiator. Both of them take advantage of backward radial propagation of cylindrical leaky waves promoting circular Airy beams with vortex patterns. The OAM state can be changed by either varying the probe phasing or the number of spiral units. A reference profile is designed under transverse-electric and transverse-magnetic excitation independently. Numerical full-wave analysis are performed using different angular states to validate the antenna design, as well to highlight the different advantages of the two alternative design approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.