Abstract

Inspired by the Turing mechanism for pattern formation, we propose a simple self-propelled particle model with short-range alignment and antialignment at larger distances. It is able to produce orientationally ordered states, periodic vortex patterns, and mesoscale turbulence, which resembles observations in dense suspensions of swimming bacteria. The model allows a systematic derivation and analysis of a kinetic theory as well as hydrodynamic equations for density and momentum fields. A phase diagram with regions of pattern formation as well as orientational order is obtained from a linear stability analysis of these continuum equations. Microscopic Langevin simulations of self-propelled particles are in agreement with these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call