Abstract

Presented is a type-II quantum algorithm for superfluid dynamics, used to numerically predict solutions of the GP equation for a complex scalar field (spinless bosons) in φ4 theory. The GP equation is a long wavelength effective field theory of a microscopic quantum lattice gas with nonlinear state reduction. The quantum lattice gas algorithm for modeling the dynamics of the one-body BEC state in 3+1 dimensions is presented. To demonstrate the method's strength as a computational physics tool, a difficult situation of filamentary singularities is simulated, the dynamics of solitary vortex-antivortex pairs, which are a basic building block of morphologies of quantum turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.