Abstract

Consider a finite connected graph possibly with multiple edges and loops. In discrete geometric analysis, Kotani and Sunada constructed the crystal associated to the graph as a standard realization of the maximal abelian covering of the graph. As an application of what the author showed in an earlier paper with Seshadri as a by-product of Geometric Invariant Theory, he shows that the Voronoi tiling (also known as the Wigner-Seitz tiling) is hidden in the crystal, that is, the crystal does not intrude the interiors of the top-dimensional Voronoi cells. The result turns out to be closely related to the tropical Abel-Jacobi map of the associated compact tropical curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.