Abstract

When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies.

Highlights

  • Solid tumors such as mesothelioma are characterized by a stubborn resistance to chemotherapy, mostly due to resistance to apoptosis

  • We have explored the mechanisms of this apoptotic resistance in 3D spheroids, in which cancer cells acquire a broad multicellular resistance to apoptosis that may replicate some of the chemoresistance seen in human solid tumors

  • In all four lines, when vorinostat was added in combination with bortezomib, vorinostat effectively abolished the multicellular resistance to bortezomib, as shown by the restoration of apoptosis in the cells in 3D to the same or greater level as that seen in 2D (Figure 1A–D)

Read more

Summary

Introduction

Solid tumors such as mesothelioma are characterized by a stubborn resistance to chemotherapy, mostly due to resistance to apoptosis. We have explored the mechanisms of this apoptotic resistance in 3D spheroids, in which cancer cells acquire a broad multicellular resistance to apoptosis that may replicate some of the chemoresistance seen in human solid tumors. We have been encouraged that several of our findings in 3D multicellular spheroids have been replicated in our studies of human mesothelioma tumor tissue grown ex vivo [1,2]. Based on our prior studies in both mesothelioma and in lung cancer, the apoptotic resistance seen in 3D spheroids appeared to be mediated by alterations in the Bcl-2 family [1,3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.