Abstract

With the assumptions of Gaussian as well as Gaussian scale mixture models for images in wavelet domain, marginal and joint distributions for phases of complex wavelet coefficients are studied in detail. From these hypotheses, we then derive a relative phase probability density function, which is called Vonn distribution, in complex wavelet domain. The maximum-likelihood method is proposed to estimate two Vonn distribution parameters. We demonstrate that the Vonn distribution fits well with behaviors of relative phases from various real images including texture images as well as standard images. The Vonn distribution is compared with other standard circular distributions including von Mises and wrapped Cauchy. The simulation results, in which images are decomposed by various complex wavelet transforms, show that the Vonn distribution is more accurate than other conventional distributions. Moreover, the Vonn model is applied to texture image retrieval application and improves retrieval accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.