Abstract

The prime number decomposition of a finite dimensional Hilbert space reflects itself in the representations that the space accommodates. The representations appear in conjugate pairs for factorization to two relative prime factors which can be viewed as two distinct degrees freedom. These, Schwinger's quantum degrees of freedom, are uniquely related to a von Neumann lattices in the phase space that characterizes the Hilbert space and specifies the simultaneous definitions of both (modular) positions and (modular) momenta. The area in phase space for each quantum state in each of these quantum degrees of freedom, is shown to be exactly $h$, Planck's constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.