Abstract

The von Neumann entropy for an electron in periodic, disorder, and quasiperiodic quantum small-world networks (QSWN's) is studied numerically. For the disorder QSWN's, the derivative of the spectrum-averaged von Neumann entropy is maximal at a certain density of shortcut links p*, which can be as a signature of the localization-delocalization transition of electron states. The transition point p* is agreement with that obtained by the level statistics method. For the quasiperiodic QSWN's, it is found that there are two regions of the potential parameter. The behaviors of electron states in different regions are similar to that of periodic and disorder QSWN's, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.