Abstract
In this paper we analyze the entropy and entropy production of a nonisolated quantum system described within the quantum Brownian motion framework. This is a very general and paradigmatic framework for describing nonisolated quantum systems and can be used in any kind of coupling regime. We start by considering the application of von Neumann entropy to an arbitrarily damped quantum system making use of its reduced density operator. We argue that this application is formally valid and develop a path-integral method to evaluate that quantity analytically. We apply this technique to a harmonic oscillator in contact with a heat bath and obtain an exact form for its entropy. Then we study the entropy production of this system and enlighten important characteristics of its thermodynamical behavior on the pure quantum realm and also address their transition to the classical limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.