Abstract

Von Bertalanffy’s model is one of the most popular differential equation used in order to study the increase in average length or weight of fish. However, this model does not include demographic Allee effect. This phenomenon is known in the fisheries literature as “depensation”, which arises when populations decline rapidly at low densities. In this paper we develop and investigate new corrected von Bertalanffy’s models with Allee effects. The generalization that we propose results from considering correction factors, one of rational type and the others of polynomial type, where two parameters are considered. The use of a parameter C > 0 leads the presented generalization, which yields some more flexible models with variable extinction rates. An Allee limit or unstable equilibrium Eu is incorporated so that the models under study have strong Allee effect. We analyze and show the transition from the strong Allee effect to the inexistence of this effect, through by a “weakening” of the Allee effect, depending on the parameters C and Eu. Finally, we discuss the flexibility of corrected von Bertalanffy’s sigmoid growth curves. So, the correspondents inflexion points are variable, i.e., the fish mass when the growth rate is maximum may be varied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.