Abstract

Patients with interstitial cystitis/painful bladder syndrome (IC/PBS) commonly suffer from widespread pain and mood disorder, which has been attributed to improper functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Voluntary exercise has been shown to improve HPA axis function, therefore we are determining whether voluntary wheel running can attenuate urological pain and dysfunction following neonatal maternal separation (NMS) in female mice. Mice underwent NMS for 3 h/day from postnatal Day 1-21, were caged with free access to running wheels at 4 weeks of age, and assessed 4 weeks later for bladder sensitivity, micturition, reward behavior, mast cell degranulation, and HPA axis-related in vitro analysis. Increased bladder sensitivity, void frequency, and mast cell degranulation was observed in adult sedentary (-Sed) NMS mice, compared to naïve-Sed controls. Sucrose preference was increased in NMS-Sed mice and corticotropin-releasing factor receptor 1 (CRF1 ) and glucocorticoid receptor mRNA levels were significantly reduced in the hippocampus. Exercise normalized bladder sensitivity, micturition output, and increased brain-derived neurotrophic factor (BDNF) mRNA levels in the hippocampus of NMS mice. Mast cell degranulation was also normalized in NMS bladders following exercise. Voluntary exercise normalized behavioral outcomes resulting from NMS in female mice, increased hippocampal BDNF mRNA levels, and decreased mast cell degranulation in the bladder. Together these results provide novel insight into the efficacy of voluntary exercise to attenuate comorbid outcomes resulting from exposure to early life stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.