Abstract

We report oxygen isotope compositions of phenocrysts and U-Pb ages of zircons in four large caldera-forming ignimbrites and post-caldera lavas of the Heise volcanic field, a nested caldera complex in the Snake River Plain, that preceded volcanism in Yellowstone. Early eruption of three normal δ 18 O voluminous ignimbrites with δ 18 O quartz = 6.4‰ and δ 18 O zircon = 4.8‰ started at Heise at 6.6 Ma, and was followed by a 2‰–3‰ δ 18 O depletion in the subsequent 4.45 Ma Kilgore caldera cycle that includes the 1800 km 3 Kilgore ignimbrite, and post-Kilgore intracaldera lavas with δ 18 O quartz = 4.3‰ and δ 18 O zircon = 1.5‰. The Kilgore ignimbrite represents the largest known low-δ 18 O magma in the Snake River Plain and worldwide. The post-Kilgore low δ 18 O volcanism likely represents the waning stages of silicic magmatism at Heise, prior to the reinitiation of normal δ 18 O silicic volcanism 100 km to the northeast at Yellowstone. The occurrence of low δ 18 O magmas at Heise and Yellowstone hallmarks a mature stage of individual volcanic cycles in each caldera complex. Sudden shifts in δ 18 O of silicic magmas erupted from the same nested caldera complexes argue against any inheritance of the low δ 18 O signature from mantle or crustal sources. Instead, δ 18 O age trends indicate progressive remelting of low δ 18 O hydrothermally altered intracaldera rocks of previous eruptions. This trend may be generally applicable to older caldera complexes in the Snake River Plain that are poorly exposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call