Abstract
Vortex rings were generated by driving pistons within circular cylinders of inner diameter D = 72.8 mm at a constant velocity U0 over a distance L = D. The Reynolds number, U0L/(2ν), was 2500. The flow downstream of circular and inclined exits was examined using volumetric 3-component velocimetry (V3V). The circular exit yields a standard primary vortex ring that propagates downstream at a constant velocity and a lingering trailing ring of opposite sign associated with the stopping of the piston. By contrast, the inclined nozzle yields a much more complicated structure. The data suggest that a tilted primary vortex ring interacts with two trailing rings; one associated with the stopping of the piston, and the other associated with the asymmetry of the cylinder exit. The two trailing ring structures, which initially have circulation of opposite sign, intertwine and are distorted and drawn through the center of the primary ring. This behavior was observed for two inclination angles. Increased inclination was associated with stronger interactions between the primary and trailing vortices as well as earlier breakdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.