Abstract
Three-dimensional, quantitative imaging of biological cells and their internal structures performed by optical diffraction tomography (ODT) is an important part of biomedical research. However, conducting quantitative analysis of ODT images requires performing 3D segmentation with high accuracy, often unattainable with available segmentation methods. Therefore, in this work, we present a new semi-automatic method, called ODT-SAS, which combines several non-machine-learning techniques to segment cells and 2 types of their organelles: nucleoli and lipid structures (LS). ODT-SAS has been compared with Cellpose and slice-by-slice manual segmentation, respectively, in cell segmentation and organelles segmentation. The comparison shows superiority of ODT-SAS over Cellpose and reveals the potential of our technique in detecting cells, nucleoli and LS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.