Abstract
Henry's law coefficients and partial molar volumes of 34 penetrants (5 inert gases, 6 inorganic gases, 17 hydrocarbon gases, 5 fluorinated gases, and CCl4 vapor) dissolved in poly(dimethylsiloxane) and low-density polyethylene were determined at 25 °C by measuring sorption of the gases and the concomitant dilation of the polymers. From the Henry's law coefficients and the partial molar volumes, Flory−Huggins parameters for polymer/gas interactions were estimated. The partial molar volumes were correlated with critical molar volumes of gases, and the interaction parameters were found to depend on the partial molar volumes. These relationships for the fluorinated gases were clearly different from those of all other gases. For CO2 and CH4 in poly(dimethylsiloxane), partial molar volumes and interaction parameters were obtained as a function of temperature over a range −30 to 95 °C. Thermal expansivities of these dissolved molecules were estimated to be 2 × 10-3 °C-1 from the temperature dependence of partial...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.