Abstract

C-Arm CT three-dimensional (3-D) digital subtraction angiography (DSA) reconstructions cannot provide temporal information to radiologists. Four-dimensional (4-D) DSA provides a time series of 3-D volumes utilizing temporal dynamics in the two-dimensional (2-D) projections using a constraining image reconstruction approach. Volumetric limiting spatial resolution (VLSR) of 4-D DSA is quantified and compared to a 3-D DSA. The effects of varying 4-D DSA parameters of 2-D projection blurring kernel size and threshold of the 3-D DSA (constraining image) of an in silico phantom (ISPH) and physical phantom (PPH) were investigated. The PPH consisted of a 76-micron tungsten wire. An [Formula: see text] scan protocol acquired the projection data. VLSR was determined from MTF curves generated from each 2-D transverse slice of every (248) 4-D temporal frame. 4-D DSA results for PPH and ISPH were compared to the 3-D DSA. 3-D DSA analysis resulted in a VLSR of 2.28 and [Formula: see text] for ISPH and PPH, respectively. Kernel sizes of either [Formula: see text] or [Formula: see text] with a 3-D DSA constraining image threshold of 10% provided 4-D DSA VLSR nearest to the 3-D DSA. 4-D DSA yielded 2.21 and [Formula: see text] with a percent error of 3.1 and 1.2% for ISPH and PPH, respectively, as compared to 3-D DSA. This research indicates 4-D DSA is capable of retaining the resolution of 3-D DSA.

Highlights

  • In 1980, digital subtraction angiography (DSA)[1,2] was introduced, providing time-resolved images of a contrast injection of a vascular network

  • In clinical practice, temporal dynamics of the vascular network under study must be obtained from 2-D acquisitions either from the rotational acquisition or from fluoroscopy views and the 3-D representation from the temporally static 3-D DSA

  • Reasons for the use of C-Arm CT systems include high spatial and temporal resolution, the ability to cover a large field of view, the ability to move the C-Arm to various view angles, and real-time fluoroscopy.[5]

Read more

Summary

Introduction

In 1980, digital subtraction angiography (DSA)[1,2] was introduced, providing time-resolved images of a contrast injection of a vascular network. Reasons for the use of C-Arm CT systems include high spatial and temporal resolution, the ability to cover a large field of view, the ability to move the C-Arm to various view angles, and real-time fluoroscopy.[5]. Furthering these advances came the introduction of 4-D DSA The need for multiple sweeps,[8] up to six bidirectional sweeps were reported, of the C-Arm CT system gantry is avoided in 4-D DSA It should be noted the current requirement of a sparse 4-D DSA constraining volume makes accurate parenchymal blood flow, as reported in Ref. 8, difficult. 4-D DSA requires one bidirectional sweep and a single injection of contrast medium

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.