Abstract

The solution-depletion method of measuring human serum albumin (HSA) adsorption to surface-modified glass-particle adsorbents with incrementally increasing hydrophilicity is implemented using SDS gel electrophoresis as a separation and quantification tool. It is shown that adsorbent capacity for albumin measured in interfacial-concentration units (mg/mL) decreases monotonically with increasing surface energy (water wettability) to detection limits near an adsorbent-particle water adhesion tension tau(0)=30 dyne/cm (nominal water contact angle theta=65( composite function)) and that albumin does not adsorb to (concentrate within the surface region of) more hydrophilic adsorbents. These adsorbed-mass measurements corroborate predictions based on interfacial energetics and are consistent with AFM measurement of protein-surface adhesion. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical adsorbent surface from bulk solution. Theory is shown to both anticipate and accommodate experimental results for all test adsorbents, suggesting that the underlying model is descriptive of the essential physical chemistry of albumin adsorption to surfaces spanning the full range of observable water wetting. In particular, application of theory to experimental data shows that the free-energy cost of dehydrating the surface region by protein displacement upon adsorption increases with increasing adsorbent hydrophilicity in a manner that controls ultimate capacity for protein. It is concluded that a simple, three-component free-energy rule adequately describes protein adsorption from aqueous solution, at least for materials bearing varying surface concentrations of anionic (not cationic) functional groups. IMPACT STATEMENT: This work yields detailed insights into the physical chemistry of protein adsorption by elucidating relationships among adsorbent surface energy, capacity to adsorb the protein human serum albumin, and the energy required to displace vicinal water from the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call