Abstract

There is considerable interest in developing new methods for in vivo imaging of the complex anatomy of the mammalian cochlea for clinical as well as fundamental studies. In this study, we explored, the feasibility of spectral domain optical coherence tomography (SD-OCT) for 3-D in vivo imaging of the cochlea in mice. The SD-OCT system employed in this study used a broadband light source centered at 1300 nm, and the imaging speed of the system was 47,000 A-scans per second using the InGaAs camera. The system was capable of providing fully processed, high-resolution B-scan images [512 (axial) x 128 (lateral) pixels] at 280 frames per sec. The 3-D imaging acquisition time for a whole cochlea was approximately 0.45 sec. The traditional SD-OCT structural imaging algorithm was used to reconstruct 3-D cochlear morphology. We demonstrated that SD-OCT can be successfully used for in vivo imaging of important morphological features within the mouse cochlea, such as the otic capsule and structures within, including Reissner's membrane, the basilar membrane, tectorial membrane, organ of Corti, and modiolus of the apical and middle turns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.