Abstract

The measurement of volumetric blood flow in small vessels in vitro and in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estimation of two pulsed-Doppler devices, a Crystal Biotech VF1 20-MHz system with either a cuff-mounted or a needlemounted probe and an Advanced Technology Laboratories Ultramark 9 High Definition Imaging ® system with a 5-MHz linear array transducer. The VF1 volumetric flow error was measured in the 3.2-mm phantom over a variety of pulsatile and continuous waveforms. The accuracy of the VF1 was also tested in porcine femoral and renal arteries. VF1 volumetric flow error ranged from 4.8% to 54.3% in the in vivo studies. The ATL demonstrated similar volumetric flow errors in the porcine femoral artery (∼3.2 mm diameter), but these errors were reduced to ≤ 17.4% in the 12.7-mm-diameter in vitro flow model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.