Abstract
SummaryIn finite element analysis of volume coupled multiphysics, different meshes for the involved physical fields are often highly desirable in terms of solution accuracy and computational costs. We present a general methodology for volumetric coupling of different meshes within a monolithic solution scheme. A straightforward collocation approach is compared to a mortar‐based method for nodal information transfer. For the latter, dual shape functions based on the biorthogonality concept are used to build the projection matrices, thus further reducing the evaluation costs. We give a detailed explanation of the integration scheme and the construction of dual shape functions for general first‐order and second‐order Langrangian finite elements within the mortar method, as well as an analysis of the conservation properties of the projection operators. Moreover, possible incompatibilities due to different geometric approximations of curved boundaries are discussed. Numerical examples demonstrate the flexibility of the presented mortar approach for arbitrary finite element combinations in two and three dimensions and its applicability to different multiphysics coupling scenarios. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.